Cuspidality and the growth of Fourier coefficients of modular forms

Author:

Böcherer Siegfried,Das Soumya

Abstract

Abstract We characterize Siegel cusp forms in the space of Siegel modular forms of large weight {k>2n} on any Siegel congruence subgroup Γ of any degree n and any level N, by a suitable growth of their Fourier coefficients (e.g., by the well-known Hecke bound) at any one of the cusps. For this, we use a ‘local’ approach as compared to our previous results on this topic. We also touch upon the question in the context of vector-valued modular forms.

Funder

UGC Centre for Advanced Studies

Department of Science and Technology (India)

Indian Institute of Science, Bangalore

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference46 articles.

1. Vektorwertige Siegelsche Modulformen kleinen Gewichtes;J. reine angew. Math.,1983

2. Die Wirkung von Heckeoperatoren auf Thetareihen mit harmonischen Koeffizienten;Math. Annalen,1982

3. Characterizing Hilbert modular cusp forms by coefficients size;Kyushu Math. J.,2014

4. Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe;Abh. Math. Sem. Univ. Hamburg,1986

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3