Eigenvalue estimates for 3-Sasaki structures

Author:

Nagy Paul-Andi1,Semmelmann Uwe2

Affiliation:

1. Center for Complex Geometry , Institute for Basic Science (IBS) , 55 Expo-ro, Yuseong-gu, 34126 Daejeon , South Korea

2. Institut für Geometrie und Topologie , Fachbereich Mathematik , Universität Stuttgart , Pfaffenwaldring 57, 70569 Stuttgart , Germany

Abstract

Abstract We obtain new lower bounds for the first non-zero eigenvalue of the scalar sub-Laplacian for 3-Sasaki metrics, improving the Lichnerowicz–Obata-type estimates by Ivanov, Petkov and Vassilev (2013, 2014). The limiting eigenspace is fully described in terms of the automorphism algebra. Our results can be thought of as an analogue of the Lichnerowicz–Matsushima estimate for Kähler–Einstein metrics. In dimension 7, if the automorphism algebra is non-vanishing, we also compute the second eigenvalue for the sub-Laplacian and construct explicit eigenfunctions. In addition, for all metrics in the canonical variation of the 3-Sasaki metric we give a lower bound for the spectrum of the Riemannian Laplace operator, depending only on scalar curvature and dimension. We also strengthen a result pertaining to the growth rate of harmonic functions, due to Conlon, Hein and Sun (2013, 2017), in the case of hyperkähler cones. In this setup we also describe the space of holomorphic functions.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The $$\textrm{G}_2$$ Geometry of 3-Sasaki Structures;The Journal of Geometric Analysis;2024-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3