The index conjecture for symmetric spaces

Author:

Berndt Jürgen1,Olmos Carlos2

Affiliation:

1. Department of Mathematics , King’s College London , London WC2R 2LS , United Kingdom

2. Facultad de Matemática, Astronomía y Física , Universidad Nacional de Córdoba , Ciudad Universitaria, 5000 Córdoba , Argentina

Abstract

Abstract In 1980, Oniščik [A. L. Oniščik, Totally geodesic submanifolds of symmetric spaces, Geometric methods in problems of algebra and analysis. Vol. 2, Yaroslav. Gos. Univ., Yaroslavl’ 1980, 64–85, 161] introduced the index of a Riemannian symmetric space as the minimal codimension of a (proper) totally geodesic submanifold. He calculated the index for symmetric spaces of rank 2 {\leq 2} , but for higher rank it was unclear how to tackle the problem. In [J. Berndt, S. Console and C. E. Olmos, Submanifolds and holonomy, 2nd ed., Monogr. Res. Notes Math., CRC Press, Boca Raton 2016], [J. Berndt and C. Olmos, Maximal totally geodesic submanifolds and index of symmetric spaces, J. Differential Geom. 104 2016, 2, 187–217], [J. Berndt and C. Olmos, The index of compact simple Lie groups, Bull. Lond. Math. Soc. 49 2017, 5, 903–907], [J. Berndt and C. Olmos, On the index of symmetric spaces, J. reine angew. Math. 737 2018, 33–48], [J. Berndt, C. Olmos and J. S. Rodríguez, The index of exceptional symmetric spaces, Rev. Mat. Iberoam., to appear] we developed several approaches to this problem, which allowed us to calculate the index for many symmetric spaces. Our systematic approach led to a conjecture, formulated first in [J. Berndt and C. Olmos, Maximal totally geodesic submanifolds and index of symmetric spaces, J. Differential Geom. 104 2016, 2, 187–217], for how to calculate the index. The purpose of this paper is to verify the conjecture.

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference27 articles.

1. J. Berndt, S. Console and C. Olmos, Submanifolds and holonomy, 2nd ed., Monogr. Res. Notes Math., CRC Press, Boca Raton 2016.

2. J. Berndt and C. Olmos, Maximal totally geodesic submanifolds and index of symmetric spaces, J. Differential Geom. 104 (2016), no. 2, 187–217.

3. J. Berndt and C. Olmos, The index of compact simple Lie groups, Bull. Lond. Math. Soc. 49 (2017), no. 5, 903–907.

4. J. Berndt and C. Olmos, On the index of symmetric spaces, J. reine angew. Math. 737 (2018), 33–48.

5. J. Berndt, C. Olmos and J. S. Rodríguez, The index of exceptional symmetric spaces, Rev. Mat. Iberoam., to appear.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Totally geodesic submanifolds in exceptional symmetric spaces;Advances in Mathematics;2023-04

2. Homogeneous Hypersurfaces in Symmetric Spaces;New Trends in Geometric Analysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3