Tilings of amenable groups

Author:

Downarowicz Tomasz,Huczek Dawid,Zhang Guohua

Abstract

Abstract We prove that for any infinite countable amenable group G, any {\varepsilon>0} and any finite subset {K\subset G} , there exists a tiling (partition of G into finite “tiles” using only finitely many “shapes”), where all the tiles are {(K,\varepsilon)} -invariant. Moreover, our tiling has topological entropy zero (i.e., subexponential complexity of patterns). As an application, we construct a free action of G (in the sense that the mappings, associated to elements of G other than the unit, have no fixed points) on a zero-dimensional space, such that the topological entropy of this action is zero.

Funder

Narodowe Centrum Nauki

National Natural Science Foundation of China

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference30 articles.

1. Shearer’s inequality and Infimum Rule for Shannon entropy and topological entropy;Preprint,2015

2. Entropy and mixing for amenable group actions;Ann. of Math. (2),2000

3. On representatives of subsets;J. Lond. Math. Soc.,1935

4. Shearer’s inequality and Infimum Rule for Shannon entropy and topological entropy;Preprint,2015

5. Pointwise theorems for amenable groups;Invent. Math.,2001

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Asymptotic pairs in topological actions of amenable groups;Journal of Differential Equations;2024-07

2. A variational principle of amenable random metric mean dimensions;Proceedings of the Edinburgh Mathematical Society;2024-05-16

3. On the Garden of Eden theorem for non-uniform cellular automata;Nonlinearity;2024-04-30

4. THERMODYNAMIC FORMALISM FOR AMENABLE GROUPS AND COUNTABLE STATE SPACES;Journal of the Institute of Mathematics of Jussieu;2024-03-15

5. An embedding theorem for subshifts over amenable groups with the comparison property;Ergodic Theory and Dynamical Systems;2024-03-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3