On birational boundedness of foliated surfaces

Author:

Hacon Christopher D.1,Langer Adrian2

Affiliation:

1. Department of Mathematics, University of Utah, 155 S 1400 E, JWB 233, Salt Lake City, UT 84112, USA

2. Institute of Mathematics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland

Abstract

Abstract In this paper we prove a result on the effective generation of pluri-canonical linear systems on foliated surfaces of general type. Fix a function {P:\mathbb{Z}_{\geq 0}\to\mathbb{Z}} , then there exists an integer {N>0} such that if {(X,{\mathcal{F}})} is a canonical or nef model of a foliation of general type with Hilbert polynomial {\chi(X,{\mathcal{O}}_{X}(mK_{\mathcal{F}}))=P(m)} for all {m\in\mathbb{Z}_{\geq 0}} , then {|mK_{\mathcal{F}}|} defines a birational map for all {m\geq N} . On the way, we also prove a Grauert–Riemenschneider-type vanishing theorem for foliated surfaces with canonical singularities.

Funder

National Science Foundation

Simons Foundation

Narodowe Centrum Nauki

Publisher

Walter de Gruyter GmbH

Subject

Applied Mathematics,General Mathematics

Reference36 articles.

1. Canonical models of foliations;Pure Appl. Math. Q.,2008

2. Adjoint linear systems on normal log surfaces;Compos. Math.,2001

3. Chapters on algebraic surfaces;Complex algebraic geometry,1997

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Complements, index theorem, and minimal log discrepancies of foliated surface singularities;European Journal of Mathematics;2024-01-08

2. Analytic Varieties Invariant by Holomorphic Foliations and Pfaff Systems;Handbook of Geometry and Topology of Singularities VI: Foliations;2024

3. On global ACC for foliated threefolds;Transactions of the American Mathematical Society;2023-09-28

4. Log canonical foliation singularities on surfaces;Mathematische Nachrichten;2023-06-07

5. Effective generation for foliated surfaces: Results and applications;Journal für die reine und angewandte Mathematik (Crelles Journal);2022-12-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3