Affiliation:
1. Drug Design and Bioinformatics Unit , Medical Biotechnology Department , Biotechnology Research Center , Pasteur Institute of Iran , Tehran , Iran
Abstract
Abstract
Objectives
The development of novel antibiotic compounds requires riboswitches; in fact, riboswitches are RNA elements present in the 5′ untranslated region of bacterial mRNA and have a metabolite-binding aptamer domain and an expression platform regulating the expression of vital genes. In the present research, one riboswitch, namely thi-box riboswitch with distinct regulatory mechanisms, was studied. It recognizes Thiamine Pyrophosphates (TPP) regulating TPP-biosynthesis genes in Escherichia
coli.
Methods
First, the compounds similar to riboswitch ligands were studied, and their binding with the riboswitch and nucleosides was investigated by molecular docking. Then, compounds containing high binding energy were chosen, and their minimum inhibitory concentration in E. coli was determined by the MIC test. Finally, the binding of compounds to nucleotides and RNA was investigated by measuring the absorbance spectrum through NanoDrop and circular dichroism (CD).
Results
In the thi-box riboswitch, nalidixic acid was found to have the best binding energy (−5.31 kJ/mol), and it inhibited E. coli growth at the minimum inhibitory concentration of 125 μg/mL, and it could bind to ribonucleosides and RNA in vitro.
Conclusions
One possible mechanism involved in the action of nalidixic acid in inhibiting the E. coli growth is to influence thi-box riboswitch.
Funder
Pasteur Institute of Iran
Subject
Biochemistry, medical,Clinical Biochemistry,Molecular Biology,Biochemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献