Phenolic and Lipophilic Extractives in Scots Pine Knots and Stemwood

Author:

Willför S.,Hemming J.,Reunanen M.,Holmbom B.

Abstract

Summary The phenolic and lipophilic extractives in the heartwood of knots from seven Scots pine trees were analysed by GC, GC-MS and HPSEC. The knots contained large amounts of phenolic stilbenes, 1–7% (w/w), and lignans, 0.4–3% (w/w), while the stemwood contained around 1% (w/w) of stilbenes and no detectable lignans. In young trees without stem heartwood the stilbene content in the knots was up to 200 times that in the stem. Some in-tree and between-tree variation was seen in the content of phenolic compounds in the knots. The ratio of pinosylvin monomethyl ether to pinosylvin was higher in the knots than in the stemwood. The most abundant lignan was nortrachelogenin, but also matairesinol, secoisolariciresinol and liovil were present in small amounts in the knots. The knots also contained a complex mixture of lignan-like compounds, here called oligolignans. The flavonoid pinocembrin was present in both stemwood and knots in amounts below 0.02% (w/w). The stilbene concentration in the radial direction, from the pith to the outer branch, decreased or was on the same level inside the stem, while it decreased markedly in the outer branch. The lignan concentration was on the same level or decreased slightly inside the stem, while it decreased markedly in the branches and became almost non-existent within 10 cm out in the branches. The knots contained large amounts (4.5–32% (w/w)) of lipophilic extractives, mainly resin acids. Some in-tree and between-tree variation was seen for the resin acids. The abietane-type resin acids dominated over the pimarane-type acids and abietic acid was the most abundant resin acid in the knots and in stem heartwood. The amount of resin acids in the radial direction decreased or was on the same level inside the stem, while a clear decrease was detected in the branches. The profile of the distribution of resin acids and phenolic compounds was similar. The knots also contained up to 0.5% (w/w) of diterpenyl aldehydes.

Publisher

Walter de Gruyter GmbH

Subject

Biomaterials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3