Modelowanie położenia jednostek kompleksów rolniczej przydatności gleb na podstawie przetwarzania ograniczonych informacji fizjograficznych i Glebowych ze zdigitalizowanych materiałów kartograficznych / Modeling the Position of Agricultural Suitability Units of Soils on the Basis of the Limited Physiographic Information Processing with Digitized Cartographic Materials

Author:

Gruszczyński Stanisław

Abstract

Abstract The aim of the study was to test the ability to model soil capability units diversity of on the basis of limited information about particle size and morphology of the terrain data. The data obtained from digitization of maps of agricultural soil and topography of the region of the Upper Silesian Industrial District. Rule extraction tools and build models were algorithms in the field of computational intelligence: different versions of decision trees, neural networks and deep learning algorithms. The best algorithms allow for correct classification to 90% of the elements of the validation set. The design ensemble of specialized classifier algorithm increased the efficiency of decision-making algorithm to identify a set of validation to about 94%. Proper selection decision algorithm allows the estimation of the likelihood vector belonging to a complex object. Computational intelligence algorithms can be considered as a tool for extracting classification rules from the collection of data on soils on the local or regional level.

Publisher

Walter de Gruyter GmbH

Subject

Soil Science,Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous),Soil Science,Earth and Planetary Sciences (miscellaneous),Environmental Science (miscellaneous)

Reference32 articles.

1. Feature Space Mapping as a universal adaptive system;Duch;Computer Physics Communications,1995

2. Kleinberg An Overtraining - Resistant Stochastic Modeling Method for of;Pattern Recognition Annals Statistics,1996

3. Prediction as a candidate for learning deep hierarchical models of data thesis;Palm,2012

4. obiektów statystyczne;Kurzyński,1997

5. sieci neuronowe sieciach zmieniających swoją strukturê Exit;Jankowski,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3