A MVMD–MMFE algorithm and its application in the flow patterns identification of horizontal oil–water two-phase flow

Author:

Qin Jiangfan1ORCID,Fan Chunling1,Zhang Chuntang1,Zheng Caixia1

Affiliation:

1. College of Automation and Electronic Engineering , Qingdao University of Science & Technology , Qingdao 266061 , China

Abstract

Abstract Aiming to extract the main information features of fluid multivariate conductance signals and identify the flow patterns under different flow velocities, we present a multichannel time series analysis algorithm based on the multivariate variational mode decomposition (MVMD) and multivariate multiscale fuzzy entropy (MMFE). Firstly, by simulating a multichannel complex signal and performing a series of sensitivity experiments within various noise intensities, we prove the feasibility of the MVMD in chaotic time series. Then, we employ the MVMD to decompose multivariate conductance signals into the intrinsic mode function (IMF) and calculate the MMFE of the IMFs for different flow patterns. Meanwhile, the multivariate empirical mode decomposition (MEMD) is also applied on the comparison of signal decomposition. Finally, we discuss the classification consequence under different mode values k to realize the optimal decomposition. The experimental results show that the MVMD–MMFE algorithm can extract the main information of fluid multichannel signals and distinguish three horizontal oil–water flow patterns effectively, which provides an idea for studying the nonlinear characteristics of the chaotic system.

Funder

Natural Science Foundation of Shandong Province

Publisher

Walter de Gruyter GmbH

Subject

Physical and Theoretical Chemistry,General Physics and Astronomy,Mathematical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3