Improving Image Search through MKFCM Clustering Strategy-Based Re-ranking Measure

Author:

Naveena A.K.1,Narayanan N.K.2

Affiliation:

1. Department of Computer Science and Engineering, College of Engineering Trikaripur, Trikaripur, India

2. College of Engineering Vadakara, Vadakara, India

Abstract

Abstract The main intention of this research is to develop a novel ranking measure for content-based image retrieval system. Owing to the achievement of data retrieval, most commercial search engines still utilize a text-based search approach for image search by utilizing encompassing textual information. As the text information is, in some cases, noisy and even inaccessible, the drawback of such a recovery strategy is to the extent that it cannot depict the contents of images precisely, subsequently hampering the execution of image search. In order to improve the performance of image search, we propose in this work a novel algorithm for improving image search through a multi-kernel fuzzy c-means (MKFCM) algorithm. In the initial step of our method, images are retrieved using four-level discrete wavelet transform-based features and the MKFCM clustering algorithm. Next, the retrieved images are analyzed using fuzzy c-means clustering methods, and the rank of the results is adjusted according to the distance of a cluster from a query. To improve the ranking performance, we combine the retrieved result and ranking result. At last, we obtain the ranked retrieved images. In addition, we analyze the effects of different clustering methods. The effectiveness of the proposed methodology is analyzed with the help of precision, recall, and F-measures.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference66 articles.

1. Biometric gait identification based on a multilayer perceptron;Robot. Autonom. Syst.,2015

2. Video search re-ranking via information bottle-neck principle;Proceedings of the 14th Annual ACM International Conference on Multimedia,2006

3. Multimedia search with pseudo relevance feedback;Proc. 2nd Int. CIVR,2003

4. An optimized feature selection technique based on incremental feature analysis for bio-metric gait data classification;Multimed. Tools Appl.,2017

5. Image re-ranking based on statistics of frequent patterns;ACM,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3