Tangramob: An Agent-Based Simulation Framework for Validating Urban Smart Mobility Solutions

Author:

Corradini Flavio1,De Angelis Francesco1,Polini Andrea1,Castagnari Carlo1,de Berardinis Jacopo2,Forcina Giorgio3

Affiliation:

1. School of Science and Technology, University of Camerino, via Madonna delle Carceri 9, Camerino MC, Italy

2. School of Computer Science, University of Manchester, Oxford Road, Manchester, M13 9PL, UK

3. School of Innovation Design and Technology, Mälardalen University, Västerås, Sweden

Abstract

Abstract Estimating the effects of introducing a range of smart mobility solutions within an urban area is a crucial concern in urban planning. The lack of a simulator for the assessment of mobility initiatives forces local public authorities and mobility service providers to base their decisions on guidelines derived from common heuristics and best practices. These approaches can help planners in shaping mobility solutions; however, given the high number of variables to consider, the effects are not guaranteed. Therefore, a solution conceived respecting the available guidelines can result in a failure in a different context. In particular, difficult aspects to consider are the interactions between different mobility services available in a given urban area and the acceptance of a given mobility initiative by the inhabitants of the area. In order to fill this gap, we introduce Tangramob, an agent-based simulation framework capable of assessing the impacts of a smart mobility initiative within an urban area of interest. Tangramob simulates how urban traffic is expected to evolve as citizens start experiencing newly offered traveling solutions. This allows decision makers to evaluate the efficacy of their initiatives, taking into account the current urban system. In this paper, we provide an overview of the simulation framework along with its design. To show the potential of Tangramob, three mobility initiatives are simulated and compared in the same scenario. This demonstrates how it is possible to perform comparative experiments so as to align mobility initiatives to the user goals.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference32 articles.

1. ABSCEV: an agent-based simulation framework about smart transportation for reducing waiting times in charging electric vehicles;Comput. Netw.,2018

2. SMARTS: scalable microscopic adaptive road traffic simulator;ACM Trans. Intell. Syst. Technol.,2017

3. La sharing mobility in Italia: numeri, fatti e potenzialitá,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3