Predict Forex Trend via Convolutional Neural Networks

Author:

Tsai Yun-Cheng1,Chen Jun-Hao2,Wang Jun-Jie3

Affiliation:

1. Center for General Education, National Taiwan University, Taipei, Taiwan

2. Department of Computer Science and Information Engineering, National Taiwan University, Taipei, Taiwan

3. Department of Computer Science and Information Engineering, National Taipei University, New Taipei City, Taiwan

Abstract

Abstract Deep learning is an effective approach to solving image recognition problems. People draw intuitive conclusions from trading charts. This study uses the characteristics of deep learning to train computers in imitating this kind of intuition in the context of trading charts. The main goal of our approach is combining the time-series modeling and convolutional neural networks (CNNs) to build a trading model. We propose three steps to build the trading model. First, we preprocess the input data from quantitative data to images. Second, we use a CNN, which is a type of deep learning, to train our trading model. Third, we evaluate the model’s performance in terms of the accuracy of classification. The experimental results show that if the strategy is clear enough to make the images obviously distinguishable the CNN model can predict the prices of a financial asset. Hence, our approach can help devise trading strategies and help clients automatically obtain personalized trading strategies.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference18 articles.

1. Artificial neural networks approach to the forecast of stock market price movements;Int. J. Econ. Manag. Syst.,2016

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3