Sentiment Polarity Detection in Bengali Tweets Using Deep Convolutional Neural Networks

Author:

Sarkar Kamal

Abstract

Abstract Sentiment polarity detection is one of the most popular sentiment analysis tasks. Sentiment polarity detection in tweets is a more difficult task than sentiment polarity detection in review documents, because tweets are relatively short and they contain limited contextual information. Although the amount of blog posts, tweets and comments in Indian languages is rapidly increasing on the web, research on sentiment analysis in Indian languages is at the early stage. In this paper, we present an approach that classifies the sentiment polarity of Bengali tweets using deep neural networks which consist of one convolutional layer, one hidden layer and one output layer, which is a soft-max layer. Our proposed approach has been tested on the Bengali tweet dataset released for Sentiment Analysis in Indian Languages contest 2015. We have compared the performance of our proposed convolutional neural networks (CNN)-based model with a sentiment polarity detection model that uses deep belief networks (DBN). Our experiments reveal that the performance of our proposed CNN-based system is better than our implemented DBN-based system and some existing Bengali sentiment polarity detection systems.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference80 articles.

1. Senti-lexicon and improved Naïve Bayes algorithms for sentiment analysis of restaurant reviews;Expert Syst. Appl.,2012

2. A sentimental education: sentiment analysis using subjectivity summarization based on minimum cuts,2004

3. A sentiment analysis of US local government tweets: the connection between tone and citizen involvement;Gov. Inform. Q.,2015

4. A fall-back strategy for sentiment analysis in Hindi: a case study,2010

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3