An efficient recurrent neural network with ensemble classifier-based weighted model for disease prediction

Author:

Kesavan Tamilselvi1,Krishnamoorthy Ramesh Kumar2

Affiliation:

1. Research and Development, Bharathiar University , Coimbatore , Tamil Nadu , India

2. Department of Computer Science, Bharathiar University , Coimbatore , Tamil Nadu , India

Abstract

Abstract Day-to-day lives are affected globally by the epidemic coronavirus 2019. With an increasing number of positive cases, India has now become a highly affected country. Chronic diseases affect individuals with no time identification and impose a huge disease burden on society. In this article, an Efficient Recurrent Neural Network with Ensemble Classifier (ERNN-EC) is built using VGG-16 and Alexnet with weighted model to predict disease and its level. The dataset is partitioned randomly into small subsets by utilizing mean-based splitting method. Various models of classifier create a homogeneous ensemble by utilizing an accuracy-based weighted aging classifier ensemble, which is a weighted model’s modification. Two state of art methods such as Graph Sequence Recurrent Neural Network and Hybrid Rough-Block-Based Neural Network are used for comparison with respect to some parameters such as accuracy, precision, recall, f1-score, and relative absolute error (RAE). As a result, it is found that the proposed ERNN-EC method accomplishes accuracy of 95.2%, precision of 91%, recall of 85%, F1-score of 83.4%, and RAE of 41.6%.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3