A transfer learning approach for the classification of liver cancer

Author:

Abdulsahib Fatimah I.1,Al-Khateeb Belal2,Kóczy László T.3,Nagy Szilvia4

Affiliation:

1. Doctoral School of Multidisciplinary Engineering Sciences, Széchenyi István University , Egyetem tér 1 , Győr , 9026 , Hungary

2. Computer Science Department, College of Computer Science and Information Technology, University of Anbar , 31001 , Ramadi, Anbar , Iraq

3. Faculty of Mechanical Engineering, Informatics and Electrical Engineering, Széchenyi István University , Egyetem tér 1 , Győr , 9026 , Hungary

4. Department of Telecommunications, Széchenyi István University , Egyetem tér 1 , Győr , 9026 , Hungary

Abstract

Abstract Problem The frequency of liver cancer is rising worldwide, and it is a common, deadly condition. For successful treatment and patient survival, early and precise diagnosis is essential. The automated classification of liver cancer using medical imaging data has shown potential outcome when employing machine and deep learning (DL) approaches. To train deep neural networks, it is still quite difficult to obtain a large and diverse dataset, especially in the medical field. Aim This article classifies liver tumors and identifies whether they are malignant, benign tumor, or normal liver. Methods This study mainly focuses on computed tomography scans from the Radiology Institute in Baghdad Medical City, Iraq, and provides a novel transfer learning (TL) approach for the categorization of liver cancer using medical images. Our findings show that the TL-based model performs better at classifying data, as in our method, high-level characteristics from liver images are extracted using pre-trained convolutional neural networks compared to conventional techniques and DL models that do not use TL. Results The proposed method using models of TL technology (VGG-16, ResNet-50, and MobileNetV2) successfully achieves high accuracy, sensitivity, and specificity in identifying liver cancer, making it an important tool for radiologists and other healthcare professionals. The experiment results show that the diagnostic accuracy in the VGG-16 model is up to 99%, ResNet-50 model 100%, and 99% total classification accuracy was attained with the MobileNetV2 model. Conclusion This proves the improvement of models when working on a small dataset. The use of new layers also showed an improvement in the performance of the classifiers, which accelerated the process.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3