Some Innovative Types of Fuzzy Ideals in AG-Groupoids

Author:

Khan Faiz Muhammad,Khan Hidayat Ullah,Mukhtar Safyan,Khan Asghar,Sarmin Nor Haniza

Abstract

Abstract AG-groupoids (non-associative structure) are basic structures in Flocks theory. This theory mainly focuses on distance optimization, motion replication, and leadership maintenance with a wide range of applications in physics and biology. In this paper, we define some new types of fuzzy ideals of AG-groupoids called (α, β)-fuzzy bi-ideals, (α, β)-fuzzy interior ideals, (β̄, ᾱ)-fuzzy bi-ideals, and (β̄, ᾱ)-fuzzy interior ideals, where α, β∈{∈γ, qδ, ∈γqδ, ∈γqδ} and ᾱ, β̄∈{⋶γ, q̄δ, ⋶γq̄δ, ⋶γq̄δ}, with α≠∈γqδ and β̄≠⋶γq̄δ. An important milestone achieved by this paper is providing the connection between classical algebraic structures (ordinary bi-ideals, interior ideals) and new types of fuzzy algebraic structures [(∈γ, ∈γqδ)-fuzzy bi-ideals, (∈γ, ∈γqδ)-fuzzy interior ideals]. Special attention is given to (∈γ, ∈γqδ)-fuzzy bi-ideals and (⋶γ, ⋶γq̄δ) -fuzzy bi-ideals.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference72 articles.

1. Groupoids satisfying a simple invertive law;Math. Stud.,1992

2. Generalized fuzzy interior ideals in semigroups;Inform. Sci.,2006

3. On fuzzy ideals and fuzzy bi-ideals in semigroups;Fuzzy Sets Syst.,1981

4. Ordered semigroups characterized by (∈, ∈ ∨ qk)-fuzzy generalized bi-ideals;Neural Comput. Appl.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid Ideals in an AG-Groupoid;New Mathematics and Natural Computation;2022-04-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3