Affiliation:
1. ECE Department, G.V.P. College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh 530048, India
2. Department of Electronics and Communication Engineering, Andhra University College of Engineering (Autonomous), Visakhapatnam, Andhra Pradesh 530003, India
Abstract
Abstract
Ultrasound (US) imaging has been broadly utilized as part of kidney diagnosis because of its ability to show structural abnormalities like cysts, stones, and infections as well as information about kidney function. The main aim of this research is to effectively classify normal and abnormal kidney images through US based on the selection of relevant features. In this study, abnormal kidney images were classified through gray-scale conversion, region-of-interest generation, multi-scale wavelet-based Gabor feature extraction, probabilistic principal component analysis-based feature selection and adaptive artificial neural network technique. The anticipated method is executed in the working platform of MATLAB, and the results were analyzed and contrasted. Results show that the proposed approach had 94% accuracy and 100% specificity. In addition, its false-acceptance rate is 0%, whereas that of existing methods is not <27%. This shows the precise prediction level of the proposed approach, compared with that of existing methods.
Subject
Artificial Intelligence,Information Systems,Software
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献