Construction design based on particle group optimization algorithm

Author:

Xia Ying1,Ikbal Mohammad Asif2,Shah Mohd Asif3

Affiliation:

1. Xinxiang Vocational and Technical College , Henan Xinxiang , 453000 , China

2. Department of ECE, Lovely Professional University , Punjab , India

3. Bakhtar University , Kabul , Afghanistan

Abstract

Abstract The machines exhibit an intelligence which is artificial intelligence (AI), and it is the design of intelligent agents. A system is represented by an intelligent agent who perceives its environment and the success rate is maximized by taking the action. The AI research is highly specialized and there are two subfields and each communication fails often. The popular AI approaches include the traditional symbolic AI and computational intelligence. In order to optimize the seismic design of the reinforced concrete pier structure, the particle swarm optimization (PSO) algorithm and the reaction spectrum analysis method are combined; they establish a regular bridge of the design variable with cross-sectional characteristics and reinforcement ratios, with the target function. The seismic optimization design framework of the pier is transformed into a multi-objective optimization problem. Calculations show that the method can quickly obtain the optimal design parameters that meet multi-objective requirements. The improved PSO main program and the calling push-over program run time are 4.32 and 1347.56 s, respectively; the push-over program running time is 99.68% of the run time of the total program. Optimization of the seismic performance of the rear bridge pier is significantly improved and is more in line with the design method; the design method proposed in this article is more practical.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3