Grey Wolf Algorithm-Based Clustering Technique

Author:

Kumar Vijay1,Chhabra Jitender Kumar2,Kumar Dinesh3

Affiliation:

1. 1Computer Science and Engineering Department, Thapar University, Patiala, Punjab, India

2. 2Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India

3. 3Computer Science and Engineering Department, GJUS and T, Hisar, Haryana, India

Abstract

AbstractThe main problem of classical clustering technique is that it is easily trapped in the local optima. An attempt has been made to solve this problem by proposing the grey wolf algorithm (GWA)-based clustering technique, called GWA clustering (GWAC), through this paper. The search capability of GWA is used to search the optimal cluster centers in the given feature space. The agent representation is used to encode the centers of clusters. The proposed GWAC technique is tested on both artificial and real-life data sets and compared to six well-known metaheuristic-based clustering techniques. The computational results are encouraging and demonstrate that GWAC provides better values in terms of precision, recall, G-measure, and intracluster distances. GWAC is further applied for gene expression data set and its performance is compared to other techniques. Experimental results reveal the efficiency of the GWAC over other techniques.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3