English grammar intelligent error correction technology based on the n-gram language model

Author:

Xiao Fan1,Yin Shehui2

Affiliation:

1. College of International Education and Cultural Tourism, Henan Polytechnic Institute , Nanyang , 473000 , China

2. Fundamental Teaching Section, Henan Polytechnic Institute , Nanyang , 473000 , China

Abstract

Abstract With the development of the Internet, the number of electronic texts has increased rapidly. Automatic grammar error correction technology is an effective safeguard measure for the quality of electronic texts. To improve the quality of electronic text, this study introduces a moving window algorithm and linear interpolation smoothing algorithm to build a Cn-gram language model. On this basis, a syntactic analysis strategy is introduced to construct a syntactic error correction model integrating Cn-gram and syntactic analysis, and English grammar intelligent error correction is carried out through the model. The results show that compared with the Bi-gram and Tri-gram, the precision of the Cn-gram model is 0.85 and 0.91% higher, and the F1 value is 0.97 and 1.14% higher, respectively. Compared with the results of test set Long, the Cn-gram model has better performance on verb error correction of the Short test set, and the precision rate, recall rate, and F1 value are increased by 0.86, 3.94, and 1.87%, respectively. The comparison of the precision, recall rate, and F1 value of the proposed grammar error correction model on the complete test set shows that the precision of the study is 19.10 and 5.41% higher for subject–verb agreement errors. The recall rate is 9.55 and 10.77% higher, respectively; F1 values are higher by 12.65 and 10.59%, respectively. The above results show that the error-correcting technique of the research design has excellent error-correcting performance. It is hoped that this experiment can provide a reference for the relevant research of automatic error correction technology of electronic text.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3