Short-term prediction of parking availability in an open parking lot

Author:

Paidi Vijay1

Affiliation:

1. Department of Computer and Information Management, School of Information and Engineering, Dalarna University Borlänge , Borlänge , Sweden

Abstract

Abstract The parking of cars is a globally recognized problem, especially at locations where there is a high demand for empty parking spaces. Drivers tend to cruise additional distances while searching for empty parking spaces during peak hours leading to problems, such as pollution, congestion, and driver frustration. Providing short-term predictions of parking availability would facilitate the driver in making informed decisions and planning their arrival to be able to choose parking locations with higher availability. Therefore, the aim of this study is to provide short-term predictions of available parking spaces with a low volume of data. The open parking lot provides parking spaces free of charge and one such parking lot, located beside a shopping center, was selected for this study. Parking availability data for 21 days were collected where 19 days were used for training, while multiple periods of the remaining 2 days were used to test and evaluate the prediction methods. The test dataset consists of data from a weekday and a weekend. Based on the reviewed literature, three prediction methods suitable for short-term prediction were selected, namely, long short-term memory (LSTM), seasonal autoregressive integrated moving average with exogenous variables (SARIMAX), and the Ensemble-based method. The LSTM method is a deep learning-based method, while SARIMAX is a regression-based method, and the Ensemble method is based on decision trees and random forest to provide predictions. The performance of the three prediction methods with a low volume of data and the use of visitor trends data as an exogenous variable was evaluated. Based on the test prediction results, the LSTM and Ensemble-based methods provided better short-term predictions at multiple times on a weekday, while the Ensemble-based method provided better predictions over the weekend. However, the use of visitor trend data did not facilitate improving the predictions of SARIMAX and the Ensemble-based method, while it improved the LSTM prediction for the weekend.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3