Hybridization of Genetic and Group Search Optimization Algorithm for Deadline-Constrained Task Scheduling Approach

Author:

Taj Nazneen,Basu Anirban

Abstract

Abstract Cloud computing is an emerging technology in distributed computing, which facilitates pay per model as per user demand and requirement. Cloud consists of a collection of virtual machines (VMs), which includes both computational and storage facility. In this paper, a task scheduling scheme on diverse computing systems using a hybridization of genetic and group search optimization (GGSO) algorithm is proposed. The basic idea of our approach is to exploit the advantages of both genetic algorithm (GA) and group search optimization algorithms (GSO) while avoiding their drawbacks. In GGSO, each dimension of a solution symbolizes a task, and a solution, as a whole, signifies all task priorities. The important issue is how to assign user tasks to maximize the income of infrastructure as a service (Iaas) provider while promising quality of service (QoS). The generated solution is competent to assure user-level (QoS) and improve Iaas providers’ credibility and economic benefit. The GGSO method also designs the producer, scrounger ranger, crossover operator, and suitable fitness function of the corresponding task. According to the evolved results, it has been found that our algorithm always outperforms the traditional algorithms.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference92 articles.

1. Genetic scheduling for parallel processor systems: comparative studies and performance issues;IEEE Trans. Parall. Distri. Sys.,1999

2. Group search optimizer: an optimization algorithm inspired by animal searching behavior;IEEE Trans. Evol/Comput.,2009

3. Job shop scheduling with the best-so-far ABC;Eng. Appl. Artif. Intell.,2012

4. Error-tolerant resource allocation and payment minimization for cloud system;IEEE Trans. Parall. Distri. Sys.,2013

5. Resource provisioning policies to increase IaaS provider’s profit in a federated cloud environment;Proc. IEEE Int. Conf. High Perform. Comput. Commun.,,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3