Modified and Optimized Method for Segmenting Pulmonary Parenchyma in CT Lung Images, Based on Fractional Calculus and Natural Selection

Author:

Kumar S. Pramod,Latte Mrityunjaya V.

Abstract

Abstract Computer-aided diagnosis of lung segmentation is the fundamental requirement to diagnose lung diseases. In this paper, a two-dimensional (2D) Otsu algorithm by Darwinian particle swarm optimization (DPSO) and fractional-order Darwinian particle swarm optimization (FODPSO) is proposed to segment the pulmonary parenchyma from the lung image obtained through computed tomography (CT) scans. The proposed method extracts pulmonary parenchyma from multi-sliced CT. This is a preprocessing step to identify pulmonary diseases such as emphysema, tumor, and lung cancer. Image segmentation plays a significant role in automated pulmonary disease diagnosis. In traditional 2D Otsu, exhaustive search plays an important role in image segmentation. However, the main disadvantage of the 2D Otsu method is its complex computation and processing time. In this paper, the 2D Otsu method optimized by DPSO and FODPSO is developed to reduce complex computations and time. The efficient segmentation is very important in object classification and detection. The particle swarm optimization (PSO) method is widely used to speed up the computation and maintain the same efficiency. In the proposed algorithm, the limitation of PSO of getting trapped in local optimum solutions is overcome. The segmentation technique is assessed and equated with the traditional 2D Otsu method. The test results demonstrate that the proposed strategy gives better results. The algorithm is tested on the Lung Image Database Consortium image collections.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference54 articles.

1. Lung image segmentation using K-means clustering algorithm with novel distance metric;Int. J. Recent Trends Eng. Res.,2016

2. Improved PSO based multi-level thresholding for cancer infected breast thermal images using Otsu;Proc. Comput. Sci.,2015

3. A hierarchical local region-based sparse shape composition for liver segmentation in CT scans;Pattern Recognit.,2016

4. An efficient method for segmentation of images based on fractional calculus and natural selection;Expert Syst. Appl.,2012

5. Lung image segmentation using K-means clustering algorithm with novel distance metric;Int. J. Recent Trends Eng. Res.,2016

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3