Affiliation:
1. College of Intelligent Systems Science and Engineering, Harbin Engineering University , Harbin 150000 , China
Abstract
Abstract
A social network image denoising algorithm based on multifeature fusion is proposed. Based on the multifeature fusion theory, the process of social network image denoising is regarded as the fitting process of neural network, and a simple and efficient convolution neural structure of multifeature fusion is constructed for image denoising. The gray features of social network image are collected, and the gray values are denoising and cleaning. Based on the image features, multiple denoising is carried out to ensure the accuracy of social network image denoising algorithm and improve the accuracy of image processing. Experiments show that the average noise of the image processed by the algorithm designed in this study is reduced by 8.6905 dB, which is much larger than that of other methods, and the signal-to-noise ratio of the output image is high, which is maintained at about 30 dB, which has a high effect in the process of practical application.
Subject
Artificial Intelligence,Information Systems,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献