A Fast Segmentation and Efficient Slice Reconstruction Technique for Head CT Images

Author:

Thasneem A.A. Haseena,Sathik M. Mohamed,Mehaboobathunnisa R.

Abstract

Abstract The three-dimensional (3D) reconstruction of medical images usually requires hundreds of two-dimensional (2D) scan images. Segmentation, an obligatory part in reconstruction, needs to be performed for all the slices consuming enormous storage space and time. To reduce storage space and time, this paper proposes a three-stage procedure, namely, slice selection, segmentation and interpolation. The methodology will have the potential to 3D reconstruct the human head from minimum selected slices. The first stage of slice selection is based on structural similarity measurement, discarding the most similar slices with none or minimal impact on details. The second stage of segmentation of the selected slices is performed using our proposed phase-field segmentation method. Validation of our segmentation results is done via comparison with other deformable models, and results show that the proposed method provides fast and accurate segmentation. The third stage of interpolation is based on modified curvature registration-based interpolation, and it is applied to re-create the discarded slices. This method is compared to both standard linear interpolation and registration-based interpolation in 100 tomographic data sets. Results show that the modified curvature registration-based interpolation reconstructs missing slices with 96% accuracy and shows an improvement in sensitivity (95.802%) on par with specificity (95.901%).

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference88 articles.

1. An unconditionally stable numerical method for bimodal image segmentation,;Appl. Math. Comput.,2012

2. A comparative study of deformable contour methods on medical image segmentation,;Image Vis. Comput.,2008

3. A universal image quality index,;IEEE Signal Process. Lett.,2002

4. Snakes, shapes, and gradient vector flow,;IEEE Trans. Image Process.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3