Circular convolution-based feature extraction algorithm for classification of high-dimensional datasets

Author:

Tajanpure Rupali1,Muddana Akkalakshmi1

Affiliation:

1. GITAM University , Hyderabad , Telangana , India

Abstract

Abstract High-dimensional data analysis has become the most challenging task nowadays. Dimensionality reduction plays an important role here. It focuses on data features, which have proved their impact on accuracy, execution time, and space requirement. In this study, a dimensionality reduction method is proposed based on the convolution of input features. The experiments are carried out on minimal preprocessed nine benchmark datasets. Results show that the proposed method gives an average 38% feature reduction in the original dimensions. The algorithm accuracy is tested using the decision tree (DT), support vector machine (SVM), and K-nearest neighbor (KNN) classifiers and evaluated with the existing principal component analysis algorithm. The average increase in accuracy (Δ) is 8.06 for DT, 5.80 for SVM, and 18.80 for the KNN algorithm. The most significant characteristic feature of the proposed model is that it reduces attributes, leading to less computation time without loss in classifier accuracy.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference53 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Machine Learning-Based Data Analytics With Privacy;Handbook of Research on AI and Knowledge Engineering for Real-Time Business Intelligence;2023-04-07

2. Data analysis with performance and privacy enhanced classification;Journal of Intelligent Systems;2023-01-01

3. Automatic classification of document resources based on Naive Bayesian classification algorithm;Informatica;2022-09-15

4. KNN Algorithm Analysis Based on Big Data Classification;Cyber Security Intelligence and Analytics;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3