Enriching Documents by Linking Salient Entities and Lexical-Semantic Expansion

Author:

Pourvali Mohsen1,Orlando Salvatore2

Affiliation:

1. Università Ca’ Foscari Venezia, Venice 30172, Italy

2. Università Ca’ Foscari Venezia, Venice, Italy

Abstract

Abstract This paper explores a multi-strategy technique that aims at enriching text documents for improving clustering quality. We use a combination of entity linking and document summarization in order to determine the identity of the most salient entities mentioned in texts. To effectively enrich documents without introducing noise, we limit ourselves to the text fragments mentioning the salient entities, in turn, belonging to a knowledge base like Wikipedia, while the actual enrichment of text fragments is carried out using WordNet. To feed clustering algorithms, we investigate different document representations obtained using several combinations of document enrichment and feature extraction. This allows us to exploit ensemble clustering, by combining multiple clustering results obtained using different document representations. Our experiments indicate that our novel enriching strategies, combined with ensemble clustering, can improve the quality of classical text clustering when applied to text corpora like The British Broadcasting Corporation (BBC) NEWS.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference44 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3