A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources

Author:

Kashinath Shafiza Ariffin12,Mostafa Salama A.1,Lim David2,Mustapha Aida3,Hafit Hanayanti4,Darman Rozanawati4

Affiliation:

1. Department of Software Engineering, Center of Intelligent and Autonomous Systems, Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia , 86400 Johor , Malaysia

2. Engineering R&D Department, Sena Traffic Systems Sdn. Bhd. , 57000 Kuala Lumpur , Malaysia

3. Department of Mathematics and Statistics, Faculty of Applied Sciences and Technology, Universiti Tun Hussein Onn Malaysia , 84600 Panchor , Johor , Malaysia

4. Department of Information Security and Web Technology, Center of Intelligent and Autonomous Systems, Faculty of Computer Science and Information Technology, Universiti Tun Hussein Onn Malaysia , 86400 Johor , Malaysia

Abstract

Abstract Designing a data-responsive system requires accurate input to ensure efficient results. The growth of technology in sensing methods and the needs of various kinds of data greatly impact data fusion (DF)-related study. A coordinative DF framework entails the participation of many subsystems or modules to produce coordinative features. These features are utilized to facilitate and improve solving certain domain problems. Consequently, this paper proposes a general Multiple Coordinative Data Fusion Modules (MCDFM) framework for real-time and heterogeneous data sources. We develop the MCDFM framework to adapt various DF application domains requiring macro and micro perspectives of the observed problems. This framework consists of preprocessing, filtering, and decision as key DF processing phases. These three phases integrate specific purpose algorithms or methods such as data cleaning and windowing methods for preprocessing, extended Kalman filter (EKF) for filtering, fuzzy logic for local decision, and software agents for coordinative decision. These methods perform tasks that assist in achieving local and coordinative decisions for each node in the network of the framework application domain. We illustrate and discuss the proposed framework in detail by taking a stretch of road intersections controlled by a traffic light controller (TLC) as a case study. The case study provides a clearer view of the way the proposed framework solves traffic congestion as a domain problem. We identify the traffic features that include the average vehicle count, average vehicle speed (km/h), average density (%), interval (s), and timestamp. The framework uses these features to identify three congestion periods, which are the nonpeak period with a congestion degree of 0.178 and a variance of 0.061, a medium peak period with a congestion degree of 0.588 and a variance of 0.0593, and a peak period with a congestion degree of 0.796 and a variance of 0.0296. The results of the TLC case study show that the framework provides various capabilities and flexibility features of both micro and macro views of the scenarios being observed and clearly presents viable solutions.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3