Design and Evaluation of Outlier Detection Based on Semantic Condensed Nearest Neighbor

Author:

Batchanaboyina M. Rao1,Devarakonda Nagaraju2

Affiliation:

1. Computer Science and Engineering, Achraya Nagarjuna University, Guntur, A.P.-522510, India

2. Department of Information Technology, Lakireddy Balireddy College of Engineering, Mylavaram, Krishna (DT), A.P.-521230, India

Abstract

Abstract Social media contain abundant information about the events or news occurring all over the world. Social media growth has a greater impact on various domains like marketing, e-commerce, health care, e-governance, and politics, etc. Currently, Twitter was developed as one of the social media platforms, and now, it is one of the most popular social media platforms. There are 1 billion user’s profiles and millions of active users, who post tweets daily. In this research, buzz detection in social media was carried out by the semantic approach using the condensed nearest neighbor (SACNN). The Twitter and Tom’s Hardware data are stored in the UC Irvine Machine Learning Repository, and this dataset is used in this research for outlier detection. The min–max normalization technique is applied to the social media dataset, and additionally, missing values were replaced by the normalized value. The condensed nearest neighbor (CNN) is used for semantic analysis of the database, and based on the optimized value provided by the proposed method, the threshold is calculated. The threshold value is used to classify buzz and non-buzz discussions in the social media database. The result showed that the SACNN achieved 99% of accuracy, and relative error is less than the existing methods.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference36 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3