Trip generation modeling for a selected sector in Baghdad city using the artificial neural network

Author:

Lafta Safa Ali1,Ismael Mohammed Qadir1

Affiliation:

1. Department of Civil Engineering, College of Engineering, University of Baghdad , Baghdad , Iraq

Abstract

Abstract This study is planned with the aim of constructing models that can be used to forecast trip production in the Al-Karada region in Baghdad city incorporating the socioeconomic features, through the use of various statistical approaches to the modeling of trip generation, such as artificial neural network (ANN) and multiple linear regression (MLR). The research region was split into 11 zones to accomplish the study aim. Forms were issued based on the needed sample size of 1,170. Only 1,050 forms with responses were received, giving a response rate of 89.74% for the research region. The collected data were processed using the ANN technique in MATLAB v20. The same database was utilized to develop the model of multiple linear regression (MLR) with the stepwise regression technique in the SPSS v25 software. The results indicate that the model of trip generation is related to family size and composition, gender, students’ number in the family, workers’ number in the family, and car ownership. The ANN prediction model is more accurate than the MLR predicted model: the average accuracy (AA) was 83.72% in the ANN model but only 72.46% in the MLR model.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Development of Trip Generation Model by Functions of Small City Based on Mobile Origin-destination Data;Journal of Korea Planning Association;2024-06-30

2. Research on Nonlinear Response Modeling Methods using Volterra Series and Neural Network model;2024 IEEE 6th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC);2024-05-24

3. Application of adaptive neuro-fuzzy inference system in modelling home-based trip generation;Ain Shams Engineering Journal;2023-11

4. Trip Attraction Rates of Banking Services in Developing Countries' Cities;Civil Engineering Journal;2023-02-01

5. A multiorder feature tracking and explanation strategy for explainable deep learning;Journal of Intelligent Systems;2023-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3