Performance Evaluation of Line Symmetry-Based Validity Indices on Clustering Algorithms

Author:

Kumar Vijay1,Chhabra Jitender Kumar2,Kumar Dinesh3

Affiliation:

1. Computer Science and Engineering Department, Thapar University Patiala, Punjab, India

2. Computer Engineering Department, National Institute of Technology, Kurukshetra, Haryana, India

3. Computer Science and Engineering Department, GJUS&T, Hisar, Haryana, India

Abstract

AbstractFinding the optimal number of clusters and the appropriate partitioning of the given dataset are the two major challenges while dealing with clustering. For both of these, cluster validity indices are used. In this paper, seven widely used cluster validity indices, namely DB index, PS index, I index, XB index, FS index, K index, and SV index, have been developed based on line symmetry distance measures. These indices provide the measure of line symmetry present in the partitioning of the dataset. These are able to detect clusters of any shape or size in a given dataset, as long as they possess the property of line symmetry. The performance of these indices is evaluated on three clustering algorithms: K-means, fuzzy-C means, and modified harmony search-based clustering (MHSC). The efficacy of symmetry-based validity indices on clustering algorithms is demonstrated on artificial and real-life datasets, six each, with the number of clusters varying from 2 to $\sqrt n ,$ where n is the total number of data points existing in the dataset. The experimental results reveal that the incorporation of line symmetry-based distance improves the capabilities of these existing validity indices in finding the appropriate number of clusters. Comparisons of these indices are done with the point symmetric and original versions of these seven validity indices. The results also demonstrate that the MHSC technique performs better as compared to other well-known clustering techniques. For real-life datasets, analysis of variance statistical analysis is also performed.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3