Fuzzy Approach to Decision Support System Design for Inventory Control and Management

Author:

Deb Mahuya,Kaur Prabjot,Sarma Kandarpa Kumar

Abstract

Abstract The ubiquitous nature of inventory and its reliance on a reliable decision support system (DSS) is crucial for ensuring continuous availability of goods. The DSS needs to be designed in a manner that enables it to highlight its present status. Further, the DSS should be able to provide indications about subtle and large-scale variations that are likely to occur in the supply chain within the context of the decision-making framework and inventory management. However, while dealing with the parameters of the system, it is observed that its operations and mechanisms are surrounded by uncertain, imprecise, and vague environments. Fuzzy-based approaches are best suited for such situations; however, these require assistance from learning systems like artificial neural network (ANN) to facilitate automated decision support. When ANN and fuzzy are combined, the fuzzy neural system and the neuro-fuzzy system (NFS) are formulated. The model of the DSS reported here is based on a framework commonly known as adaptive neuro-fuzzy inference system (ANFIS), which is a version of NFS. The configured model has the advantages of both the ANN and fuzzy systems, and has been tested for the design of a DSS for use as part of inventory control. In this work, we report the design of an ANFIS-based DSS configured to work as DSS for inventory management. The system accepts demand as input and generates procurement, ordering, and holding cost to control production and supply. The system deals with a certain profitability rating required to quantify the changes in the input and is combined with the day-to-day inventory records and demand-available cycle. The effectiveness of the system has been checked in terms of number and types of membership used, accuracy generated, and computational efficiency accounted by the computation cycles required.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference48 articles.

1. An application of fuzzy sets theory to the EOQ model with imperfect quality items;Comput. Oper. Res.,2004

2. Movement epenthesis detection for continuous sign language recognition;J. Intell. Syst.,2017

3. An adaptive neuro-fuzzy inference system based algorithm for long term demand forecasting of natural gas consumption, in:;Fourth International Conference on Industrial Engineering and Operations Management (IEOM, 2014),

4. Optimal inventory model for items with imperfect quality and shortage back ordering;Omega,2007

5. Comparison of fuzzy inference system (FIS), FIS with artificial neural networks (FIS+ ANN) and FIS with adaptive neuro-fuzzy inference system (FIS+ ANFIS) for inventory control;J. Intell. Manuf.,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3