Neuro-Fuzzy Modeling for Multi-Objective Test Suite Optimization

Author:

Anwar Zeeshan1,Ahsan Ali2,Catal Cagatay3

Affiliation:

1. 1Department of Electrical and Computer Engineering, Center for Advanced Studies in Engineering, 44000 Islamabad, Pakistan

2. 2Department of Engineering Management, Center for Advanced Studies in Engineering, 44000 Islamabad, Pakistan

3. 3Department of Computer Engineering, Istanbul Kultur University, 34156 Istanbul, Turkey

Abstract

AbstractRegression testing is a type of testing activity, which ensures that source code changes do not affect the unmodified portions of the software adversely. This testing activity may be very expensive in, some cases, due to the required time to execute the test suite. In order to execute the regression tests in a cost-effective manner, the optimization of regression test suite is crucial. This optimization can be achieved by applying test suite reduction (TSR), regression test selection (RTS), or test case prioritization (TCP) techniques. In this paper, we designed and implemented an expert system for TSR problem by using neuro-fuzzy modeling-based approaches known as “adaptive neuro-fuzzy inference system with grid partitioning” (ANFIS-GP) and “adaptive neuro-fuzzy inference system with subtractive clustering” (ANFIS-SC). Two case studies were performed to validate the model and fuzzy logic, multi-objective genetic algorithms (MOGAs), non-dominated sorting genetic algorithm (NSGA-II) and multi-objective particle swarm optimization (MOPSO) algorithms were used for benchmarking. The performance of the models were evaluated in terms of reduction of test suite size, reduction in fault detection rate, reduction in test suite execution time, and reduction in requirement coverage. The experimental results showed that our ANFIS-based optimization system is very effective to optimize the regression test suite and provides better performance than the other approaches evaluated in this study. Size and execution time of the test suite is reduced up to 50%, whereas loss in fault detection rate is between 0% and 25%.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference108 articles.

1. Exploration and analysis of regression test suite optimization;ACM SIGSOFT Softw. Eng. Notes,2014

2. A multi-objective optimization approach for the integration and test order problem;Inf. Sci.,2014

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3