Feature Pair Index Graph for Clustering

Author:

Karthika N.1,Janet B.1

Affiliation:

1. Department of Computer Applications, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India

Abstract

Abstract Text documents are significant arrangements of various words, while images are significant arrangements of various pixels/features. In addition, text and image data share a similar semantic structural pattern. With reference to this research, the feature pair is defined as a pair of adjacent image features. The innovative feature pair index graph (FPIG) is constructed from the unique feature pair selected, which is constructed using an inverted index structure. The constructed FPIG is helpful in clustering, classifying and retrieving the image data. The proposed FPIG method is validated against the traditional KMeans++, KMeans and Farthest First cluster methods which have the serious drawback of initial centroid selection and local optima. The FPIG method is analyzed using Iris flower image data, and the analysis yields 88% better results than Farthest First and 28.97% better results than conventional KMeans in terms of sum of squared errors. The paper also discusses the scope for further research in the proposed methodology.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference62 articles.

1. A novel data clustering algorithm based on modified gravitational search algorithm;Eng. Appl. Artif. Intell.,2017

2. Compaction techniques for nextword indexes,2001

3. Constructing visual phrases for effective and efficient object-based image retrieval;ACM Trans. Multimedia Comput. Commun. Appl.,2008

4. A comprehensive survey of clustering algorithms;Ann. Data Sci.,2015

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3