Best Polynomial Harmony Search with Best β-Hill Climbing Algorithm

Author:

Abu Doush Iyad12,Santos Eugene3

Affiliation:

1. Computer Science Department, Yarmouk University , Irbid , Jordan

2. Department of Computer Science Department and Information Systems, American University of Kuwait , Salmiya , Kuwait

3. Thayer Engineering School, Dartmouth College , 8000 Cummings Hall . Hanover , NH 03755 Germany

Abstract

Abstract Harmony Search Algorithm (HSA) is an evolutionary algorithm which mimics the process of music improvisation to obtain a nice harmony. The algorithm has been successfully applied to solve optimization problems in different domains. A significant shortcoming of the algorithm is inadequate exploitation when trying to solve complex problems. The algorithm relies on three operators for performing improvisation: memory consideration, pitch adjustment, and random consideration. In order to improve algorithm efficiency, we use roulette wheel and tournament selection in memory consideration, replace the pitch adjustment and random consideration with a modified polynomial mutation, and enhance the obtained new harmony with a modified β-hill climbing algorithm. Such modification can help to maintain the diversity and enhance the convergence speed of the modified HS algorithm. β-hill climbing is a recently introduced local search algorithm that is able to effectively solve different optimization problems. β-hill climbing is utilized in the modified HS algorithm as a local search technique to improve the generated solution by HS. Two algorithms are proposed: the first one is called PHSβ–HC and the second one is called Imp. PHSβ–HC. The two algorithms are evaluated using 13 global optimization classical benchmark function with various ranges and complexities. The proposed algorithms are compared against five other HSA using the same test functions. Using Friedman test, the two proposed algorithms ranked 2nd (Imp. PHSβ–HC) and 3rd (PHSβ–HC). Furthermore, the two proposed algorithms are compared against four versions of particle swarm optimization (PSO). The results show that the proposed PHSβ–HC algorithm generates the best results for three test functions. In addition, the proposed Imp. PHSβ–HC algorithm is able to overcome the other algorithms for two test functions. Finally, the two proposed algorithms are compared with four variations of differential evolution (DE). The proposed PHSβ–HC algorithm produces the best results for three test functions, and the proposed Imp. PHSβ–HC algorithm outperforms the other algorithms for two test functions. In a nutshell, the two modified HSA are considered as an efficient extension to HSA which can be used to solve several optimization applications in the future.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Recent Versions and Applications of Sparrow Search Algorithm;Archives of Computational Methods in Engineering;2023-02-07

2. Downwash-aware Control Allocation for Over-actuated UAV Platforms;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

3. An Overview of the Application of Harmony Search for Chemical Engineering Optimization;International Journal of Chemical Engineering;2022-10-07

4. TWGH: A Tripartite Whale–Gray Wolf–Harmony Algorithm to Minimize Combinatorial Test Suite Problem;Electronics;2022-09-12

5. Boosting the training of neural networks through hybrid metaheuristics;Cluster Computing;2022-08-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3