A multi-weapon detection using ensembled learning

Author:

Abdullah Moahaimen1,Al-Noori Ahmed H. Y.23,Suad Jameelah1,Tariq Emad4

Affiliation:

1. Department of Computer Science, College of Science, Mustansiriyah University , Baghdad , 10011 , Iraq

2. School of Science, Engineering and Environment, University of Salford , Salford M5 4NT , United Kingdom

3. Computer Engineering Department, College of Engineering, Al-Nahrain University , Baghdad , 64040 , Iraq

4. Business Management/Marketing Department, Liverpool Hope University , Liverpool L16 9JD , United Kingdom

Abstract

Abstract Recently, the level of criminals and terrorists using light weapons (such as knives and firearms) has increased rapidly around the world. Unfortunately, most current surveillance systems are still based mainly on human monitoring and intervention. For that reason, the requirement for a smart system for detecting different weapons becomes crucial in the field of security and computer vision. In this article, a novel technique for detecting various types of weapons has been proposed. This system is based mainly on deep learning techniques, namely, You Only Look Once, version 8 (YOLOv8), to detect a different class of light weapons. Furthermore, this study focuses on detecting two armed human poses based on ensemble learning techniques, which involve combining the outputs of different Yolov8 models to produce an accurate and robust detection system. The proposed system is evaluated on the self-created weapons dataset comprising thousands of images of different classes of weapons. The experiment results of this work show the effectiveness of ensemble learning for detecting various weapons with high accuracy, achieving 97.2% of mean average precision.

Publisher

Walter de Gruyter GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3