Face recognition algorithm based on stack denoising and self-encoding LBP

Author:

Lu Yanjing1,Khan Mudassir2,Ansari Mohd Dilshad3

Affiliation:

1. Zhengzhou Technical College , Zhengzhou Henan , 450121 , China

2. Department of Computer Science, College of Science & Arts Tanumah, King Khalid University , Abha , Saudi Arabia

3. CMR College of Engineering & Technology , Hyderabad , India

Abstract

Abstract To optimize the weak robustness of traditional face recognition algorithms, the classification accuracy rate is not high, the operation speed is slower, so a face recognition algorithm based on local binary pattern (LBP) and stacked autoencoder (AE) is proposed. The advantage of LBP texture structure feature of the face image as the initial feature of sparse autoencoder (SAE) learning, use the unified mode LBP operator to extract the histogram of the blocked face image, connect to form the LBP features of the entire image. It is used as input of the stacked AE, feature extraction is done, realize the recognition and classification of face images. Experimental results show that the recognition rate of the algorithm LBP-SAE on the Yale database has achieved 99.05%, and it further shows that the algorithm has a higher recognition rate than the classic face recognition algorithm; it has strong robustness to light changes. Experimental results on the Olivetti Research Laboratory library shows that the developed method is more robust to light changes and has better recognition effects compared to traditional face recognition algorithms and standard stack AEs.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference22 articles.

1. Kas M, El-Merabet Y, Ruichek Y, Messoussi R. A comprehensive comparative study of handcrafted methods for face recognition lbp-like and non lbp operators. Multimed Tools Appl. 2020;79(1/2):375–413.

2. Li T, Wang L, Chen Y, Ren Y, Xia J. A face recognition algorithm based on lbp-ehmm. J Artif Intell. 2019;1(2):61–8.

3. Benitez-Garcia G, Nakano-Miyatake M, Olivares-Mercado J, Perez-Meana H, Sanchez-Perez G, Toscano-Medina K. A low complexity face recognition scheme based on down sampled local binary patterns. Int Arab J Inf Technol. 2019;16(3):338–47.

4. Reddy N, Rao M, Satyanarayana C. A novel face recognition system by the combination of multiple feature descriptors. Int Arab J Inf Technol. 2019;16(4):669–76.

5. Zhou L, Wang H, Lin S, Hao S, Lu ZM. Face recognition based on local binary pattern and improved pairwise-constrained multiple metric learning. Multimed Tools Appl. 2020;79(1):675–91.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3