BAT and Hybrid BAT Meta-Heuristic for Quality of Service-Based Web Service Selection

Author:

Podili Prashanth1,Pattanaik K.K.2,Rana Prashanth Singh3

Affiliation:

1. 1School of Computer Engineering, Indian Institute of Technology, Hyderabad, India

2. 2A-117, Atal Bihari Vajpayee-Indian Institute of Information Technology and Management Gwalior, Morena Link Road, Gwalior, MP 474015, India

3. 3Thapar Institute of Engineering and Technology, Patiala, India

Abstract

AbstractEfficient QoS-based service selection from a pool of functionally substitutable web services (WS) for constructing composite WS is important for an efficient business process. Service composition based on diverse QoS requirements is a multi-objective optimization problem. Meta-heuristic techniques such as genetic algorithm (GA), particle swarm optimization (PSO), and variants of PSO have been extensively used for solving multi-objective optimization problems. The efficiency of any such meta-heuristic techniques lies with their rate of convergence and execution time. This article evaluates the efficiency of BAT and Hybrid BAT algorithms against the existing GA and Discrete PSO techniques in the context of service selection problems. The proposed algorithms are tested on the QWS data set to select the best fit services in terms of maximum aggregated end-to-end QoS parameters. Hybrid BAT is found to be efficient for service composition.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference60 articles.

1. Differential evolution: a simple and efficient heuristic for global optimization over continuous spaces;J. Global Optimization,1997

2. Bat algorithm inspired algorithm for solving numerical optimization problems;Appl. Mech. Mater.,2012

3. Bat algorithm: literature review and applications;Int. J. Bio-Inspired Comput.,2013

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3