Predicting Automatic Trigger Speed for Vehicle-Activated Signs

Author:

Jomaa Diala1,Yella Siril1

Affiliation:

1. Department of Computer Engineering, Dalarna University, 78170 Borlänge, Sweden

Abstract

Abstract Vehicle-activated signs (VAS) are speed-warning signs activated by radar when the driver speed exceeds a pre-set threshold, i.e. the trigger speed. The trigger speed is often set relative to the speed limit and is displayed for all types of vehicles. It is our opinion that having a static setting for the trigger speed may be inappropriate, given that traffic and road conditions are dynamic in nature. Further, different vehicle classes (mainly cars and trucks) behave differently, so a uniform trigger speed of such signs may be inappropriate to warn different types of vehicles. The current study aims to investigate an automatic VAS, i.e. one that could warn vehicle users with an appropriate trigger speed by taking into account vehicle types and road conditions. We therefore investigated different vehicle classes, their speeds, and the time of day to be able to conclude whether different trigger speeds of VAS are essential or not. The current study is entirely data driven; data are initially presented to a self-organising map (SOM) to be able to partition the data into different clusters, i.e. vehicle classes. Speed, time of day, and length of vehicle were supplied as inputs to the SOM. Further, the 85th percentile speed for the next hour is predicted using appropriate prediction models. Adaptive neuro-fuzzy inference systems and random forest (RF) were chosen for speed prediction; the mean speed, traffic flow, and standard deviation of vehicle speeds were supplied as inputs for the prediction models. The results achieved in this work show that RF is a reliable model in terms of accuracy and efficiency, and can be used in finding appropriate trigger speeds for an automatic VAS.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference54 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3