Linear Regression Supporting Vector Machine and Hybrid LOG Filter-Based Image Restoration

Author:

Basha D. Khalandar12,Venkateswarlu T.3

Affiliation:

1. Department of Electronics and Communication Engineering, Sri Venkateswara University, Tirupati, India

2. Department of Electronics and Communication Engineering, Institute of Aeronautical Engineering, Dundigal, Hyderabad, India

3. Department of Electronics and Communication Engineering, SVU College of Engineering, Sri Venkateswara University, Tirupati, India

Abstract

Abstract The image restoration (IR) technique is a part of image processing to improve the quality of an image that is affected by noise and blur. Thus, IR is required to attain a better quality of image. In this paper, IR is performed using linear regression-based support vector machine (LR-SVM). This LR-SVM has two steps: training and testing. The training and testing stages have a distinct windowing process for extracting blocks from the images. The LR-SVM is trained through a block-by-block training sequence. The extracted block-by-block values of images are used to enhance the classification process of IR. In training, the imperfections on the image are easily identified by setting the target vectors as the original images. Then, the noisy image is given at LR-SVM testing, based on the original image restored from the dictionary. Finally, the image block from the testing stage is enhanced using the hybrid Laplacian of Gaussian (HLOG) filter. The denoising of the HLOG filter provides enhanced results by using block-by-block values. This proposed approach is named as LR-SVM-HLOG. A dataset used in this LR-SVM-HLOG method is the Berkeley Segmentation Database. The performance of LR-SVM-HLOG was analyzed as peak signal-to-noise ratio (PSNR) and structural similarity index. The PSNR values of the house and pepper image (color image) are 40.82 and 36.56 dB, respectively, which are higher compared to the inter- and intra-block sparse estimation method and block matching and three-dimensional filtering for color images at 20% noise.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3