Models for Predicting Development Effort of Small-Scale Visualization Projects

Author:

Jayaram M.A.,Kiran Kumar T.M.,Raghavendra H.V.

Abstract

Abstract Software project effort estimation is one of the important aspects of software engineering. Researchers in this area are still striving hard to come out with the best predictive model that has befallen as a greatest challenge. In this work, the effort estimation for small-scale visualization projects all rendered on engineering, general science, and other allied areas developed by 60 postgraduate students in a supervised academic setting is modeled by three approaches, namely, linear regression, quadratic regression, and neural network. Seven unique parameters, namely, number of lines of code (LOC), new and change code (N&C), reuse code (R), cumulative grade point average (CGPA), cyclomatic complexity (CC), algorithmic complexity (AC), and function points (FP), which are considered to be influential in software development effort, are elicited along with actual effort. The three models are compared with respect to their prediction accuracy via the magnitude of error relative to the estimate (MER) for each project and also its mean MER (MMER) in all the projects in both the verification and validation phases. Evaluations of the models have shown MMER of 0.002, 0.006, and 0.009 during verification and 0.006, 0.002, and 0.002 during validation for the multiple linear regression, nonlinear regression, and neural network models, respectively. Thus, the marginal differences in the error estimates have indicated that the three models can be alternatively used for effort computation specific to visualization projects. Results have also suggested that parameters such as LOC, N&C, R, CC, and AC have a direct influence on effort prediction, whereas CGPA has an inverse relationship. FP seems to be neutral as far as visualization projects are concerned.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference62 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Software Effort Estimation Using Hard Limiting Techniques with Special Reference to Small Size Technical &Analytical Projects;2022 Fourth International Conference on Emerging Research in Electronics, Computer Science and Technology (ICERECT);2022-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3