Affiliation:
1. Department of Computer Engineering, National Institute of Technology, Kurukshetra 136119, India
Abstract
Abstract
An automatic speech recognition (ASR) system translates spoken words or utterances (isolated, connected, continuous, and spontaneous) into text format. State-of-the-art ASR systems mainly use Mel frequency (MF) cepstral coefficient (MFCC), perceptual linear prediction (PLP), and Gammatone frequency (GF) cepstral coefficient (GFCC) for extracting features in the training phase of the ASR system. Initially, the paper proposes a sequential combination of all three feature extraction methods, taking two at a time. Six combinations, MF-PLP, PLP-MFCC, MF-GFCC, GF-MFCC, GF-PLP, and PLP-GFCC, are used, and the accuracy of the proposed system using all these combinations was tested. The results show that the GF-MFCC and MF-GFCC integrations outperform all other proposed integrations. Further, these two feature vector integrations are optimized using three different optimization methods, particle swarm optimization (PSO), PSO with crossover, and PSO with quadratic crossover (Q-PSO). The results demonstrate that the Q-PSO-optimized GF-MFCC integration show significant improvement over all other optimized combinations.
Subject
Artificial Intelligence,Information Systems,Software
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献