Cat swarm optimization algorithm based on the information interaction of subgroup and the top-N learning strategy

Author:

Songyang Li1,Haipeng Yu1,Miao Wang1

Affiliation:

1. Henan University of Engineering , No. 1, Xianghe Road , Xinzheng , P. R. China

Abstract

Abstract Because of the lack of interaction between seeking mode cats and tracking mode cats in cat swarm optimization (CSO), its convergence speed and convergence accuracy are affected. An information interaction strategy is designed between seeking mode cats and tracking mode cats to improve the convergence speed of the CSO. To increase the diversity of each cat, a top-N learning strategy is proposed during the tracking process of tracking mode cats to improve the convergence accuracy of the CSO. On ten standard test functions, the average values, standard deviations, and optimal values of the proposed algorithm with different N values are compared with the original CSO algorithm and the adaptive cat swarm algorithm based on dynamic search (ADSCSO). Experimental results show that the global search ability and the convergence speed of the proposed algorithm are significantly improved on all test functions. The proposed two strategies will improve the convergence accuracy and convergence speed of CSO greatly.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3