Construction pit deformation measurement technology based on neural network algorithm

Author:

Wu Yong1,Zhou Xiaoli1

Affiliation:

1. School of Surveying and Geographic Informatics, Sichuan Water Conservancy Vocational College , Chongzhou , 611231 , China

Abstract

Abstract The current technology of foundation pit deformation measurement is inefficient, and its accuracy is not ideal. Therefore, an intelligent prediction model of foundation pit deformation based on back propagation neural network (BPNN) is proposed to predict the foundation pit deformation intelligently, with high accuracy and efficiency, so as to improve the safety of the project. Firstly, to address the shortcomings of BPNNs, which rely on the initial parameter settings and tend to fall into local optimum and unstable performance, this study adopts the modified particle swarm optimization (MPSO) to optimise the parameters of BPNNs and constructs a pit deformation prediction model based on the MPSO–BP algorithm to achieve predictive measurements of pit deformation. After training and testing the data samples, the results show that the prediction accuracy of the MPSO–BP pit deformation prediction model is 99.76%, which is 2.25% higher than that of the particle swarm optimization–back propagation (PSO–BP) pit deformation prediction model and 3.01% higher than that of the BP pit deformation prediction model. The aforementioned results show that the MPSO–BP pit deformation prediction model proposed in this study can effectively predict the pit deformation variables of construction projects and provide data support for the protective measures of the staff, which is helpful for the cause of construction projects in China.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3