Empirically Investigating a Hybrid Lean-Agile Design Paradigm for Mobile Robots

Author:

Elmoselhy Salah A.M.1

Affiliation:

1. 1Associate Member of IMechE and Former Researcher at Fitzwilliam College, Cambridge, UK

Abstract

AbstractLean design and agile design paradigms have been proposed for designing robots; yet, none of them could strike a balance between cost-effectiveness and short duration of the design process without compromising the quality of performance. The present article identifies the key determinants of the mobile robots development process. It also identifies empirically the mobile robot design activities and strategies with the most influence on mobile robot performance. The study identified statistically the mobile robot design activities and strategies most positively correlated with mobile robot performance. The results showed that 65% of typical mobile robot design activities and strategies are affiliated with the lean design paradigm, while the remaining 35% are affiliated with the agile design paradigm. In addition, it was found that 22% of the lean mobile robot design activities and strategies and 25% of the agile mobile robot design activities and strategies, significantly with 99% confidence, are among the design activities and strategies most positively correlated with improving mobile robot performance. A hybrid lean-agile design paradigm is thus proposed.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference84 articles.

1. State - of - the - art in lean design engineering : a literature review on white collar lean in Proceedings of the Institution of Mechanical of;Baines;Engineers Part Journal Engineering Manufacture,2006

2. design a systematic approach Springer Verlag New York;Pahl;Engineering,1998

3. Understanding design process robustness a modelling approach in Proceedings of the th International Conference on ICED pp;Chalupnik;Engineering Design,2007

4. Trade - off strategies in engineering design;Otto;Res Eng Des,1991

5. Deters design for resilience;Liu;Architectural Enterprise Information Systems,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3