Optimized LMS algorithm for system identification and noise cancellation

Author:

Ling Qianhua1,Ikbal Mohammad Asif2,Kumar P.3

Affiliation:

1. Xi’an Mingde Institute of Technology , Xi’an , China

2. Dept. of ECE , Lovely Professional University Punjab , India

3. Discipline of Electrical, Electronic and Computer Engineering , University of KwaZulu-Natal , Durban , South Africa

Abstract

Abstract Optimization by definition is the action of making most effective or the best use of a resource or situation and that is required almost in every field of engineering. In this work, the optimization of Least Mean square (LMS) algorithm is carried out with the help of Particle Swarm Optimization (PSO) and Ant Colony Optimization (ACO). Efforts have been made to find out the advantages and disadvantages of combining gradient based (LMS) algorithm with Swarm Intelligence SI (ACO, PSO). This optimization of LMS algorithm will help us in further extending the uses of adaptive filtering to the system having multi-model error surface that is still a gray area of adaptive filtering. Because the available version of LMS algorithm that plays an important role in adaptive filtering is a gradient based algorithm, that get stuck at the local minima of system with multi-model error surface considering it global minima, resulting in an non-optimized convergence. By virtue of the proposed method we have got a profound solution for the problem associated with system with multimodal error surface. The results depict significant improvements in the performance and displayed fast convergence rate, rather stucking at local minima. Both the SI techniques displayed their own advantage and can be separately combined with LMS algorithm for adaptive filtering. This optimization of LMS algorithm will further help to resolve serious interference and noise issues and holds a very important application in the field of biomedical science.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3