Adaptive intelligent learning approach based on visual anti-spam email model for multi-natural language

Author:

Mohammed Mazin Abed1,Ibrahim Dheyaa Ahmed2,Salman Akbal Omran3

Affiliation:

1. Information Systems Department, College of Computer Science and Information Technology, University of Anbar , 31001 , Anbar , Iraq

2. Communications Engineering Techniques Department, Information Technology Collage, Imam Ja’afar Al-Sadiq University , Baghdad , Iraq

3. Department of Control & Automation Techniques Engineering, Electrical Engineering Technical College, Middle Technical University , Baghdad , Iraq

Abstract

Abstract Spam electronic mails (emails) refer to harmful and unwanted commercial emails sent to corporate bodies or individuals to cause harm. Even though such mails are often used for advertising services and products, they sometimes contain links to malware or phishing hosting websites through which private information can be stolen. This study shows how the adaptive intelligent learning approach, based on the visual anti-spam model for multi-natural language, can be used to detect abnormal situations effectively. The application of this approach is for spam filtering. With adaptive intelligent learning, high performance is achieved alongside a low false detection rate. There are three main phases through which the approach functions intelligently to ascertain if an email is legitimate based on the knowledge that has been gathered previously during the course of training. The proposed approach includes two models to identify the phishing emails. The first model has proposed to identify the type of the language. New trainable model based on Naive Bayes classifier has also been proposed. The proposed model is trained on three types of languages (Arabic, English and Chinese) and the trained model has used to identify the language type and use the label for the next model. The second model has been built by using two classes (phishing and normal email for each language) as a training data. The second trained model (Naive Bayes classifier) has been applied to identify the phishing emails as a final decision for the proposed approach. The proposed strategy is implemented using the Java environments and JADE agent platform. The testing of the performance of the AIA learning model involved the use of a dataset that is made up of 2,000 emails, and the results proved the efficiency of the model in accurately detecting and filtering a wide range of spam emails. The results of our study suggest that the Naive Bayes classifier performed ideally when tested on a database that has the biggest estimate (having a general accuracy of 98.4%, false positive rate of 0.08%, and false negative rate of 2.90%). This indicates that our Naive Bayes classifier algorithm will work viably on the off chance, connected to a real-world database, which is more common but not the largest.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Malware Family Classification via Image-Based Analysis Utilizing a Balance-Augmented VGG16 Model;Traitement du Signal;2023-10-30

2. Mitigating the Risks of Malware Attacks with Deep Learning Techniques;Electronics;2023-07-21

3. Application of Computer Intelligent Information Management in Multi-modal Language Interaction Analysis of Live Broadcast with Goods;2023 IEEE International Conference on Integrated Circuits and Communication Systems (ICICACS);2023-02-24

4. A State-of-the-Art Survey on Various Domains of Multi-Agent Systems and Machine Learning;Multi-Agent Technologies and Machine Learning;2023-01-25

5. Shopify - Shop Augmentation and Recommendation System;2023 International Conference on Computer Communication and Informatics (ICCCI);2023-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3