Affiliation:
1. School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi, India
Abstract
Abstract
Many recommender systems frequently make suggestions for group consumable items to the individual users. There has been much work done in group recommender systems (GRSs) with full ranking, but partial ranking (PR) where items are partially ranked still remains a challenge. The ultimate objective of this work is to propose rank aggregation technique for effectively handling the PR problem. Additionally, in real applications, most of the studies have focused on PR without ties (PRWOT). However, the rankings may have ties where some items are placed in the same position, but where some items are partially ranked to be aggregated may not be permutations. In this work, in order to handle problem of PR in GRS for PRWOT and PR with ties (PRWT), we propose a novel approach to GRS based on genetic algorithm (GA) where for PRWOT Spearman foot rule distance and for PRWT Kendall tau distance with bucket order are used as fitness functions. Experimental results are presented that clearly demonstrate that our proposed GRS based on GA for PRWOT (GRS-GA-PRWOT) and PRWT (GRS-GA-PRWT) outperforms well-known baseline GRS techniques.
Subject
Artificial Intelligence,Information Systems,Software
Reference42 articles.
1. Genetic algorithm optimization for pre-processing and variable selection of spectroscopic data;Bioinformatic,2005
2. Comparing and aggregating rankings with ties;POD,2004
3. A negotiation approach for group recommendation;IC-A,2009
4. A negotiation approach for group recommendation;IC-A,2009
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献