Optimizing Software Modularity with Minimum Possible Variations

Author:

Prajapati Amarjeet1,Chhabra Jitender Kumar2

Affiliation:

1. Department of Computer Science and Engineering, JIIT, Noida 201309, Uttar Pradesh, India

2. Department of Computer Engineering, NIT Kurukshetra, Haryana 136119, India

Abstract

Abstract Poor design choices at the early stages of software development and unprincipled maintenance practices usually deteriorate software modularity and subsequently increase system complexity. In object-oriented software, improper distribution of classes among packages is a key factor, responsible for modularity degradation. Many optimization techniques to improve the software modularity have been proposed in the literature. The focus of these optimization techniques is to produce modularization solutions by optimizing different design quality criteria. Such modularization solutions are good from the different aspect of quality; however, they require huge modifications in the existing modular structure to realize the suggested solution. Thus these techniques are costly and time consuming if applied at early stages of software maintenance. This paper proposes a search-based optimization technique to improve the modularity of the software system with minimum possible variation between the existing and produced modularization solution. To this contribution, a penalized fitness function, namely, penalized modularization quality, is designed in terms of modularization quality and the Move or Join Effectiveness Measure metric. Furthermore, this fitness function is used in both single-objective genetic algorithm (SGA) and multi-objective genetic algorithm (MGA) to generate the modularization. The effectiveness of the proposed remodularization approach is evaluated over five open-source and three random generated software systems. The experimentation results show that the proposed approach is able to generate modularization solutions with improved quality along with lesser perturbation compared to their non-penalty counterpart and at the same time it performs better with the MGA compared to the SGA. The proposed approach can be very useful, especially when total remodularization is not feasible/desirable due to lack of time or high cost.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Reference80 articles.

1. Dimension reduction using semi-supervised locally linear embedding for plant leaf classification;Lect. Notes Comput. Sci.,2009

2. Computational intelligence approach for modeling hydrogen production: a review;Eng. Appl. Comput. Fluid Mech.,2018

3. Jiazzi: new age components for old fashioned Java,2001

4. Improving modular structure of software system using structural and lexical dependency;Inf. Softw. Technol.,2017

5. Many-objective artificial bee colony algorithm for large-scale software module clustering problem;Soft Comput.,2018

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3