Extreme Learning Machine-Based Traffic Incidents Detection with Domain Adaptation Transfer Learning

Author:

Elhatri Chaimae1,Tahifa Mohammed1,Boumhidi Jaouad1

Affiliation:

1. LIIAN Laboratory, Department of Computer Sciences, Faculty of Science Dhar-Mahraz, Sidi Mohamed Ben Abdellah University, Fez 3000, Morocco

Abstract

AbstractTraffic incidents in big cities are increasing alongside economic growth, causing traffic delays and deteriorating road safety conditions. Thus, developing a universal freeway automatic incident detection (AID) algorithm is a task that took the interest of researchers. This paper presents a novel automatic traffic incident detection method based on the extreme learning machine (ELM) algorithm. Furthermore, transfer learning has recently gained popularity as it can successfully generalise information across multiple tasks. This paper aimed to develop a new approach for the traffic domain-based domain adaptation. The ELM was used as a classifier for detection, and target domain adaptation transfer ELM (TELM-TDA) was used as a tool to transfer knowledge between environments to benefit from past experiences. The detection performance was evaluated by common criteria including detection rate, false alarm rate, and others. To prove the efficiency of the proposed method, a comparison was first made between back-propagation neural network and ELM; then, another comparison was made between ELM and TELM-TDA.

Publisher

Walter de Gruyter GmbH

Subject

Artificial Intelligence,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3